
This article was downloaded by: [128.112.200.107] On: 15 September 2023, At: 11:03
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

INFORMS Journal on Optimization

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

A Computationally Efficient Benders Decomposition
for Energy Systems Planning Problems with Detailed
Operations and Time-Coupling Constraints
Anna Jacobson, Filippo Pecci, Nestor Sepulveda, Qingyu Xu, Jesse Jenkins

To cite this article:
Anna Jacobson, Filippo Pecci, Nestor Sepulveda, Qingyu Xu, Jesse Jenkins (2023) A Computationally Efficient Benders
Decomposition for Energy Systems Planning Problems with Detailed Operations and Time-Coupling Constraints. INFORMS
Journal on Optimization

Published online in Articles in Advance 02 Aug 2023

. https://doi.org/10.1287/ijoo.2023.0005

Full terms and conditions of use: https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-
Conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2023, INFORMS

Please scroll down for article—it is on subsequent pages

With 12,500 members from nearly 90 countries, INFORMS is the largest international association of operations research (O.R.)
and analytics professionals and students. INFORMS provides unique networking and learning opportunities for individual
professionals, and organizations of all types and sizes, to better understand and use O.R. and analytics tools and methods to
transform strategic visions and achieve better outcomes.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
https://doi.org/10.1287/ijoo.2023.0005
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
http://www.informs.org


A Computationally Efficient Benders Decomposition for Energy 
Systems Planning Problems with Detailed Operations and 
Time-Coupling Constraints
Anna Jacobson,a,* Filippo Pecci,b Nestor Sepulveda,c,d Qingyu Xu,e Jesse Jenkinsf 

a Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, New Jersey 08540; b Andlinger Center for Energy and the 
Environment, Princeton University, Princeton, New Jersey 08540; c Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; 
d McKinsey and Company, New York, New York 10007; e Energy Internet Research Institute, Tsinghua University, Beijing 100084, People’s 
Republic of China; f Andlinger Center for Energy and the Environment and Department of Mechanical and Aerospace Engineering, Princeton 
University, Princeton, New Jersey 08540 
*Corresponding author 
Contact: anna.f.jacobson@gmail.com, https://orcid.org/0000-0002-3929-4742 (AJ); fp0820@princeton.edu, 

https://orcid.org/0000-0003-3200-0892 (FP); nsep@mit.edu, https://orcid.org/0000-0003-2735-8769 (NS); xuqingyu0610@gmail.com, 
https://orcid.org/0000-0003-2692-5135 (QX); jdj2@princeton.edu, https://orcid.org/0000-0002-9670-7793 (JJ) 

Received: February 10, 2023 
Revised: April 18, 2023 
Accepted: June 16, 2023 
Published Online in Articles in Advance: 
August 2, 2023 

https://doi.org/10.1287/ijoo.2023.0005 

Copyright: © 2023 INFORMS

Abstract. Energy systems planning models identify least-cost strategies for expansion and 
operation of energy systems and provide decision support for investment, planning, regu-
lation, and policy. Most are formulated as linear programming (LP) or mixed integer linear 
programming (MILP) problems. Despite the relative efficiency and maturity of LP and 
MILP solvers, large scale problems are often intractable without abstractions that impact 
quality of results and generalizability of findings. We consider a macro-energy systems 
planning problem with detailed operations and policy constraints and formulate a compu-
tationally efficient Benders decomposition separating investments from operations and 
decoupling operational timesteps using budgeting variables in the master model. This 
novel approach enables parallelization of operational subproblems and permits modeling 
of relevant constraints coupling decisions across time periods (e.g., policy constraints) 
within a decomposed framework. Runtime scales linearly with temporal resolution; tests 
demonstrate substantial runtime improvement for all MILP formulations and for some LP 
formulations depending on problem size relative to analogous monolithic models solved 
with state-of-the-art commercial solvers. Our algorithm is applicable to planning problems 
in other domains (e.g., water, transportation networks, production processes) and can solve 
large-scale problems otherwise intractable. We show that the increased resolution enabled 
by this algorithm mitigates structural uncertainty, improving recommendation accuracy.

Funding: Funding for this work was provided by the Princeton Carbon Mitigation Initiative (funded by 
a gift from BP) and the Princeton Zero-carbon Technology Consortium (funded by gifts from GE, 
Google, ClearPath, and Breakthrough Energy). 

Supplemental Material: The e-companion is available at https://doi.org/10.1287/ijoo.2023.0005. 

Keywords: macro-energy systems • capacity expansion planning • Benders decomposition • mixed integer linear programming •
linear programming • decomposition methods

1. Introduction
Energy systems planning problems optimize resource investments, retirements, and operations to minimize total 
system cost (equivalently, maximize societal welfare) subject to technological, political, environmental, and eco-
nomic constraints. These capacity expansion problems support decision-making in investment planning, regula-
tion, and policy. Assuming perfect foresight and free entry, central-planning optimizations simulate a market 
under perfect competition; they are thus able to go beyond providing guidance on capacity deployment and 
retirement and play essential roles analyzing government policies (Larson et al. 2021, Victoria et al. 2022, Ricks 
et al. 2023) and advanced technologies’ role in decarbonized energy systems (Mallapragada et al. 2020, Victoria 
et al. 2020, Ricks et al. 2022).

The vast majority of macro-energy systems planning problems (large-scale planning problems with regional 
or national scope) are implemented as linear programming (LP) or mixed integer linear programming (MILP) 
problems (Ringkjøb et al. 2018, Cho et al. 2022) due to the relative simplicity, computational efficiency, and matu-
rity of LP and MILP solution methods and the fact that most salient system characteristics can be represented 
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with reasonable accuracy using linear formulations. Recently, the increasing penetration of variable renewable 
energy resources (VRE) has required much greater temporal, geospatial, and operational resolution to accurately 
capture key physical, economic, and engineering considerations that affect investment and retirement decisions 
(Helistö et al. 2021). Electrification of transportation, heating, and industrial processes and production of hydro-
gen from electrolysis is also increasing the relevance of electricity systems and more tightly-coupling electricity 
with other energy and industrial systems, requiring the formulation and solution of multisector energy systems 
models (Brown et al. 2018, He et al. 2021). As a result, full-resolution, full-scale models are composed of millions 
of variables and constraints, thereby risking intractability.

In order to deal with computational constraints, macro-energy systems planning problems are often heavily 
abstracted; most models either by downsample or subsample constituent time periods, aggregate regions into 
larger geographic zones, and/or relax operational constraints of physical systems. For a recent review, see Cho 
et al. (2022).

Simplified model structures can improve runtime but significantly impact investment and policy recommen-
dations derived from energy planning models (Bistline et al. 2022). Modeling too few representative days may 
fail to capture weekly demand patterns and their influence on thermal plant unit commitment (UC) and storage 
dispatch decisions (Mallapragada et al. 2020). Employing nonsequential time slices may poorly incorporate 
weather patterns (Poncelet et al. 2016) and prevent accurate modeling of flexibility requirements or energy stor-
age. Temporal clustering is shown to significantly impact investment and operation of VRE (Pfenninger 2017). 
Simplification of system operation has been shown to affect investment recommendations in transmission plan-
ning (Xu and Hobbs 2019, Neumann et al. 2022) and dispatch decisions for systems with UC constraints (Palmin-
tier and Webster 2013, Poncelet et al. 2020). Different means of geospatial aggregation techniques also impact 
model output (Siala and Mahfouz 2019, Frysztacki et al. 2022). Because of these effects, abstractions must be care-
fully tailored to each study’s focus; this inhibits the generalizability of any given model and the replicability of 
solutions when multiple models’ solutions are compared.

Energy systems planning problems are often intractable even while deploying significant abstractions; these 
models require computationally efficient solution methods to terminate. Lohmann and Rebennack (2017) devel-
oped tailored Benders decomposition algorithms for three simplified planning problems. Among the cases stud-
ied, two did not include time coupling constraints, as this omission allowed decomposed subproblems to be 
solved in parallel once investment decision variables had been fixed. The third case included just a single aggre-
gated demand zone and omitted transmission operations and investments, storage resources, and policy con-
straints. Multiperiod planning problems solved in Lara et al. (2018) and Li et al. (2022) considered detailed 
operational and time-coupling constraints and decomposed the resulting MILP problems into a series of optimi-
zation problems per planning period. These studies did not investigate computationally efficient methods to 
solve the single-period subproblems; as a result, the largest case study in Lara et al. (2018) and Li et al. (2022) had 
only 6 zones and modeled each planning year using only 15 representative days. The work by Munoz et al. 
(2016), is one of the few to investigate computationally efficient methods for single-period planning problems. 
This study considered a full operational year with hourly resolution but ignored storage resources, ramping lim-
its, and UC constraints, all of which couple operational decisions across time periods. Sepulveda (2020) proposed 
a nested decomposition algorithm to solve a single-year planning problem with detailed operational and time 
coupling constraints. In the first decomposition stage, investment decisions are separated from operational deci-
sions. Then, the operational subproblem is solved using a Dantzig-Wolfe decomposition. However, such a tech-
nique does not allow for cuts to be fully decoupled by timestep and requires each iteration of the outer 
decomposition algorithm to await convergence of the inner decomposition before continuing to the next 
iteration.

Our study goes further than state-of-the-art models in the literature by investigating decomposition methods 
for a single-period energy systems planning problem with hourly resolution and detailed operation and time- 
coupling constraints. We aim to mitigate the errors introduced by temporal clustering by solving the planning 
problem for a full operational year with minimal downscaling or subsampling of intra-annual timesteps and to 
minimize abstractions of operational constraints. The model described below is an electricity system planning 
problem with detailed operational decisions and constraints on ramping, storage operations, and start-up and 
shut-down (UC) for thermal resources. Our formulation further includes policy constraints that couple time steps 
across the planning period, for example, caps on annual CO2 emissions or a renewable portfolio standard (RPS). 
Decision variables consist of generation, energy storage and transmission investment and retirement decisions 
and operational decisions like resource dispatch. For MILP cases, we constrain all investment decisions to be 
integer. In comparison with previous literature (Lara et al. 2018, Li et al. 2022), we solve the resulting energy 
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systems planning problem for a full operational year with hourly resolution, resulting in 8,736 time steps 
(52 weeks).

In this work, we propose a new decomposition scheme to separate investment decisions into a master model, 
along with a series of budgeting variables representing the time-coupling constraints (namely, CO2 and RPS con-
straints.) This representation of policy constraints using budgeting variables is novel, to the best of the authors’ 
knowledge. The reformulation described below enables the decomposition of a monolithic problem into a master 
model and several operational subproblems. Because each subproblem is fully decoupled, operational subpro-
blems are solved in parallel with solutions incorporated as one Benders cut per subproblem per algorithmic itera-
tion. As shown in Section 4.2, inclusion of multiple cuts per iteration significantly improves the method’s 
computational performance compared with both monolithic solution approaches and standard, single-cut, Bend-
ers decomposition implementations. The inclusion of the budgeting variables for time-coupling constraints is 
thus a key novel contribution of this study.

The capacity expansion problems considered here belong to the wider framework of integrated planning in 
infrastructure systems. These optimization problems are characterized by a complex structure wherein diagonal 
blocks of the matrix composing systems’ variables and constraints are linked by both complicating variables 
(e.g., investments) and complicating constraints (e.g., policy constraints) see Figure 1. Examples of other pro-
blems in this class include but are not limited to: optimal production planning in industrial processes, where 
inventory constraints link together different planning periods (Shah and Ierapetritou 2012); stochastic planning 
of water and wastewater systems (Naderi and Pishvaee 2017); and optimal placement of electric bus charging 
stations, where both locations and scheduling are optimized (An 2020). In all of these cases, the resulting optimi-
zation problems are too large to be solved by monolithic approaches and tailored decomposition methods such 
as the one described here are required. Because our decomposition scheme is not restricted to the framework of 
energy systems, our computational experiments can inform researchers working on integrated planning pro-
blems in other application areas.

Section 2 describes the formulation of the energy systems planning problem with detailed operational and 
time-coupling constraints. In Section 3, we develop a novel Benders decomposition scheme which divides a 
full operational year into subperiods which can be processed in parallel. In Section 4, we evaluate the effi-
ciency of the developed method using case studies derived from the Eastern United States with varying spatial 
extent ranging from 2–19 zones and with levels of temporal resolution ranging from 2 to 52 weeks. We con-
clude by examining the impacts of our enabled increased temporal resolution on resources’ investment 
recommendations.

2. Problem Formulation
We formulate an energy systems planning problem wherein electricity generation, energy storage, capacity 
expansion and retirement, and energy dispatch are jointly optimized over a single planning period. An in-depth 
description of the constraints comprising the problem are included in the appendix, sections A2.1–A2.3. The 
objective function being minimized represents investment and operational costs and includes penalties for violat-
ing policy constraints. In this work, we consider three different policy scenarios and their corresponding policy 
constraints, as described in Table 1.

Optimization constraints (see section A2.2) include maximum output limits for renewable resources, ramping 
limits, and start-up and shut-down restrictions for thermal generators (e.g., UC constraints.) As noted by 

Figure 1. (Color online) Block Structure of Problem (1) with Both Complicating Constraints and Variables, Where nW � |W |

Note. Investment-only constraints (1d) are not pictured.
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Palmintier and Webster (2015), the ability to represent UC significantly impacts model results and improves 
accuracy. Here, we implement an aggregated UC model similar to Palmintier and Webster (2013, 2015) and relax 
the integer constraints on UC variables to further improve scalability.

In most cases, planning problems for energy networks with several thousand nodes (i.e., buses) are intractable; 
we therefore divide the geographical area of interest into zones which incorporate real-world data (see section 
A2.5) on demand profiles and climate conditions. For each zone, we create clusters for resources (e.g., generators 
or storage units) based on technology, cost of connection to transmission grids, and operating parameters. We 
assume that resources within a given cluster have the same capacity size per unit and use integer variables to 
model the decisions to install or retire a number of units within each cluster. We also include interregional power 
transmission and integer investment decision variables for capacity expansion of existing transmission paths 
between modeled zones. In this way, the energy system is modeled as a graph where each node represents a 
zone with demand and constituent resources (e.g., generators, storage) and edges represent interzonal transmis-
sion capacity.

In this study, we implement a transport model and do not consider Kirchhoff’s Voltage Law (KVL) or power 
losses. As noted in Neumann et al. (2022), inclusion of these features would have greater impact on systems 
with lower levels of spatial aggregation (e.g., hundreds of nodes) than those described in Section 4, which 
include up to 19 aggregated demand zones. However, the novel Benders decomposition method developed in 
Section 3 can be applied to planning problems with KVL constraints due to the separation of transmission 
investments and operations without the need for nonlinear solution methods; this is the subject of future 
work.

Macro-energy systems planning problems are commonly formulated using a selection of operational sub-
periods due to models’ size (Frew and Jacobson 2016, Lara et al. 2018, Mallapragada et al. 2018, Mallapra-
gada et al. 2020, Li et al. 2022). Storage resources’ operation and thermal resource UC and ramping 
constraints are often modeled within each subperiod by linking first and last time steps in a method known 
as “circular indexing.” This approximation assumes that storage levels and UC decisions across two subper-
iods are decoupled. Errors may arise when subperiods are too short (Mallapragada et al. 2020), as it becomes 
impossible to fully capture weekly demand and weather patterns and their influence on UC and storage dis-
patch decisions. This is often the case in previous studies (Lara et al. 2018, Mallapragada et al. 2018, Li et al. 
2022), where only a few representative 24-hour periods (days) are used to model systems’ yearly operation. 
For the work in this manuscript, subperiods are one week long; circular indexing occurs over a 168-hour 
time period.

We develop a Benders decomposition scheme to solve an optimization problem for a planning period with up 
to 52 consecutive weeks of operational decisions. The investigation of appropriate timeseries clustering methods 
to select representative subperiods is outside the scope of this manuscript. For problems with fewer than 
52 weeks we assume that a clustering method has been implemented, resulting in sampled subperiods indexed 
by set W. For each subperiod w ∈W, we define its set of hours as Hw � {(w� 1)δw + 1, : : : , wδw}, where δw is the 
number of time steps within the subperiod (in our case, δw � 168).

2.1. Overall Problem Formulation
Appendix Section A.2 contains a list of all constraints included in the model. To highlight problem structure, we 
introduce a compact formulation below. Assume that when u and v are vectors, the inequality u ≤ v is evaluated 
component-wise. Let y ∈ Rm be a vector grouping all investment decision variables, and let R and r be such that 
constraints (A1)–(A3) correspond to Ry ≤ r. In addition, let vector cI be such that the fixed cost objective terms 
(A18) are denoted cT

I y. For each subperiod w ∈W, consider a vector xw ∈ Rn grouping all operational decision 
variables, and let matrices Aw and Bw, and vector bw be such that Awxw +Bwy ≤ bw corresponds to constraints 
(A4)–(A13). Let vector cw be such that the objective function terms (A19) + (A21) + (A20) + (A22) are equal to 
P

w∈WcT
wxw. Finally, let matrix Qw and vector e be such that 

P
w∈WQwxw ≤ e represents the policy constraints 

across the different scenarios (corresponding to (A15) for case RPS, to (A16) for case CO2, and remaining 

Table 1. Policy Scenarios Considered in this Study

Scenario Description

REF The reference case. Emissions and dispatch by resource type are unrestricted.
RPS Renewable portfolio standard. 70% of generation must come from qualifying resources (e.g., VRE).
CO2 CO2 emissions cap. Emissions are constrained to 0.05 tons per MWh.
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unenforced for case REF.) The resulting MILP problem is:

minimize cT
I y+

X

w∈W
cT

wxw (1a) 

subject to Awxw +Bwy ≤ bw, ∀w ∈W (1b) 
X

w∈W
Qwxw ≤ e (1c) 

Ry ≤ r (1d) 
xw ≥ 0, ∀w ∈W (1e) 
y ≥ 0 (1f) 
y ∈ Zm: (1g) 

3. Solution Method
Problem (1) is difficult to solve because it includes both complicating variables (e.g., investment decisions) and 
constraints (e.g., CO2 limits) that link all operational subperiods; see Figure 1.

The complex structure of Problem (1) is shared by several integrated planning problems in a variety of application 
areas (e.g., Shah and Ierapetritou 2012, Naderi and Pishvaee 2017, Lara et al. 2018, An 2020). While ubiquitous, analo-
gous optimization problems are particularly common in macro-energy systems modeling. Multiperiod planning pro-
blems in Lara et al. (2018) and Li et al. (2022) are decomposed into a series of single-period operational problems that 
are a special case of (1), where investment decision variables are fixed. In these studies, the single-period operational 
problems were not further decomposed due to the presence of policy constraints like those seen in (A15) and (A16). 
Few studies have developed efficient methods for single-period planning problems: Munoz et al. (2016) investigated 
the solution of a special case of Problem (1) where storage, ramping limits, and thermal plant UC are not considered. 
However, the exclusion of UC as a system characteristic affects the accuracy of model results (Palmintier and Webster 
2015). Studies like the one performed by Lohmann and Rebennack (2017) included simplified cases of Problem (1), 
where either time-coupling or interzonal transmission constraints are ignored.

In the following, we develop a Benders decomposition scheme for Problem (1) which enables parallel compu-
tation of subperiods. A standard implementation of Benders decomposition to Problem (1) would consider only 
investment decisions y as complicating variables, and rely on the solution of a large, monolithic operational sub-
problem, spanning the whole year, at each iteration. This is the same approach used in Lara et al. (2018) and Li 
et al. (2022) to solve analogous energy systems planning problems. Nested decompositions have also been pro-
posed (Sepulveda 2020) as means of further decomposing operational subproblems, but this technique still takes 
the operational problem as a single entity in the scope of the master model. In both cases, the master problem is 
given by:

minimize cT
I y + θ (2a) 

subject to θ ≥
X

w∈W
f j
w + (p

j)
T
(y� yj), ∀j � 0, : : : , k� 1, (2b) 

Ry ≤ r (2c) 
y ≥ 0 (2d) 
y ∈ Zm: (2e) 

Where θ�represents an approximation of the operational cost within the master model. Benders cuts (2b) approx-
imate operational cost based on a single operational subproblem, which models dispatch across the entire time-
series:

minimize
X

w∈W
cT

wxw (3a) 

subject to Awxw + Bwy ≤ bw, ∀w ∈W (3b) 
X

w∈W
Qwxw ≤ e (3c) 

xw ≥ 0, ∀w ∈W (3d) 
y � yk : p (3e) 
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Problem (3) is not separable with respect to the subperiod index w ∈W due to constraints in (3c) that tie together 
all subperiods. As shown in Section 4, modeling operations as a monolithic problem is impractical as Problem (3) 
quickly becomes intractable as number of zones and subperiods increases. Sepulveda (2020) suggested solving 
Problem (3) using a nested Dantzig-Wolfe decomposition algorithm. However, such a strategy requires each iter-
ation of the Benders decomposition algorithm to await convergence of the inner Dantzig-Wolfe decomposition 
before continuing. It also does not allow the inclusion of multiple decoupled cuts (2b) per iteration, resulting in 
increased number of iterations as seen in Table 4.

In the following we take a different approach, enabling the separation of Problem (1) into subproblems that 
can be solved in parallel without requiring a nested decomposition. First, we prove the following result.

Theorem 1. Problem (1) is equivalent to:

minimize cT
I y +

X

w∈W
cT

wxw

subject to Awxw + Bwy ≤ bw, ∀w ∈W
Qwxw ≤ qw, w ∈W
X

w∈W
qw � e

Ry ≤ r
xw ≥ 0, ∀w ∈W
y ≥ 0
y ∈ Zm:

(4) 

Proof. Without loss of generality, we assume that W � {1, : : : , nW}. We will show that:
XnW

i�1
Qixi ≤ e �∃(qi)

nW
i�1 such that

XnW

i�1
qi � e and Qixi ≤ qi, ∀i � 1, : : : , nW: (5) 

The implication “⇐” follows by definition of vectors q1, : : : , qnW
. By induction, we show that also the “⇒ ” impli-

cation holds. Assume nW � 2 and Q1x1 +Q2x2 ≤ e. Then, if we define q1 � e�Q2x2 and q2 �Q2x2 we have
q1 + q2 � e
Q1x1 ≤ e�Q2x2 � q1

Q2x2 � q2

(6) 

Next, we assume that it holds for nW � l and prove that this implies that it holds for nW � l+ 1. We want to show 
that:

Xl+1

i�1
Qixi ≤ e⇒∃q1, : : : , ql+1 such that

Xl+1

i�1
qi � e and Qixi ≤ qi, ∀i � 1: : : , l+ 1 (7) 

Define ql+1 �Ql+1xl+1 and observe:

Xl

i�1
Qixi ≤ e�Ql+1xl+1 � e� ql+1: (8) 

Since we are assuming that the claim holds for nW � l, we have that there exist q1, : : : , ql such that 
Pl

i�1 qi �

e� ql+1 and Qixi ≤ qi for all i � 1, : : : , l, which completes the induction step. w

3.1. Benders Decomposition Algorithm
The structure of Problem (4) suggests the implementation of a Benders decomposition algorithm wherein bud-
geting variables (qw) are used to implement (1c) and both y and qw are treated as complicating variables. We 
note that this budgeting approach should be extensible to other constraints coupling subperiods, such as long- 
duration storage state-of-charge or hydro reservoir levels or similar time-coupling inventory constraints, 
although these constraints are not implemented in the present numerical tests. Initialize UB �∞, f 0

w � 0, p0 � 0, 
y0 � 0, l0

w � 0, and q0
w � 0, for all w ∈W. For all k � 1, : : :Kmax proceed as follows: 

Jacobson et al.: A Novel Benders Decomp. Scheme for Energy Systems Planning 
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Step 1. Obtain estimated solutions yk and qk
w, for all w ∈W by solving the master problem:

minimize cT
I y+

X

w∈W
θw (9a) 

subject to θw ≥ f j
w+(p

j)
T
(y�yj)+ (lj

w)
T
(qw�qj

w), ∀j� 0, : : : ,k�1, w∈W (9b) 

X

w∈W
qw � e (9c) 

Ry≤ r (9d) 

y≥ 0 (9e) 

y∈Zm, (9f) 

where f j
w represents the current operational cost given a fixed set of investments and pj and lj

w represent the 
Lagrangian multipliers associated with investment decisions and policy constraints (e.g., RPS) respectively. Set 
LB to be the optimal value of Problem (9).

Step 2. For every w ∈W, solve the following linear subproblem:

minimize cT
wxw

subject to Awxw +Bwy ≤ bw

Qwxw ≤ qw

xw ≥ 0
y � yk : p

qw � qk
w : l,

(10) 

and compute the optimal value f k
w and Lagrangian multipliers pk and lk

w given the fixed set of investment deci-
sions (yk) and coupling constraint budgets (qk

w) which are constants in the scope of the subproblem. Set 
UB �min(UBprev, cT

I yk +
P

w∈Wf k
w), where UBprev is the upper bound from the previous iteration of the algorithm, 

(∞ if k � 1.) If (UB�LB)=LB ≤ Reltol, then stop. Else, set k � k+ 1 and go back to Step 1.
Observe that subproblems in Step 2 are separable and can be solved in parallel, solving |W | smaller opera-

tional subproblems, each formulated over δw timesteps. This comes at the cost of adding |W | constraints (Bend-
ers cuts) to the master problem per iteration, thereby increasing the size of the master problem compared with a 
standard Benders implementation. Numerical experiments reported in the next section suggest that this trade-off 
is worthwhile, as the total computational effort is dominated by the solution of the operational subproblems 
rather than the master problem. Furthermore, incorporation of multiple cuts allows more information to be com-
municated to the master problem at each iteration of the algorithm, decreasing the number of iterations needed 
for convergence.

4. Numerical Experiments
We consider 2-, 6-, 12-, and 19-zone cases of the Eastern United States; see Figure 2. Initial capacity estimates are 
given for the year 2050 as output by the case generation software PowerGenome (Schivley et al. 2021), see section 
A2.5. For each set of Eastern Interconnection regions, we represent the operational year using 2, 12, 22, 32, 42, 
and 52 representative weeks. Each planning problem is considered under the three policy scenarios described in 
Table 1. The size of the resulting optimization problems is summarized in Table 2.

In order to evaluate the impact of integer investment decision variables on the computational effort needed to 
solve energy systems planning problems, we consider two forms of Problem (1): in the first (hereafter “MILP”) 
investment and retirement variables are integer for both generation and transmission resources—this is the form 
presented in Problem (1). In the second (hereafter “LP”) we relax this constraint and allow all variables to be con-
tinuous. We compare the computational performance of the decomposition algorithm with a monolithic 
approach, where Problem (1) is solved directly by state-of-the-art optimization solvers, and with a standard 
Benders decomposition algorithm where a single full operational subproblem is solved at each iteration.

Jacobson et al.: A Novel Benders Decomp. Scheme for Energy Systems Planning 
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4.1. Computational Setup
All optimization problems are implemented in Julia 1.6.1 (Bezanson et al. 2017), where optimization solvers are 
called through JuMP 0.21.9 (Dunning et al. 2017). We solve all MILP and LP problems using Gurobi (v9.0.1). The 
simulations are run on Princeton University’s Della computer cluster with 2.8 GHz Cascade Lake processors, 
Intel Xeon Platinum 8260 at 2.40 GHz. Problems are considered intractable if they require more than 48 hours of 
computations or 200 GB of memory to terminate.

We set a tolerance Reltol � 10�3. Accordingly, optimality tolerance, MIP gaps, and barrier convergence toler-
ance for the monolithic models are set to 10�3. For these models, Gurobi is run using the barrier method with 
crossover turned off. This allows a fair comparison between the runtimes of monolithic and decomposed 
approaches, as Benders decomposition is not guaranteed to return basic solutions, and the crossover stage of the 
interior point solution method implemented by Gurobi requires considerable computational time to convert an 
optimal feasible solution to an optimal basic solution. When solving the subproblem (10), however, we enable 
crossover, as cuts (9b) require basic solutions.

Figure 2. (Color online) IPM Regions Used in Our Numerical Experiments 

Notes. (a) Zones, 2-zone simulation; (b) Zones, 6-zone simulation. (c) Zones, 12-zone simulation; (d) Zones, 19-zone simulation.

Table 2. Model Size by Zone

Zones |G | |GUC | Variables (·109) Constraints (·109)

2 62 16 1.1 3.4
6 175 54 3.4 10.5
12 285 106 6.2 19.3
19 437 167 9.7 30.4

Notes. Shows number of generator clusters, total number of variables and total number of constraints. 
Numbers of variables and constraints are those associated with the 52-week (full year) monolithic 
problem.
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We solve the operational subproblems (10) in parallel. For each iteration of the algorithm, |W | CPUs are 
assigned one operational subproblem each. Data pertaining to cuts in (9b) is returned to the master model from 
these auxiliary CPUs. Returning only information necessary to formulate cuts (as opposed to entire solutions) 
allows minimal interprocess communication, thus speeding up time between iterations. Problem (9) waits for all 
subproblems to terminate before incorporating each of their cuts into a new iteration of the master problem and 
sending solutions yk and qk

w back to the subproblems for the next algorithmic iteration. For these cases, all sub-
problems were solved on a single compute node. In cases where the number of subproblems exceeds available 
CPUs on a single compute node, multiple subproblems may be run in series on each CPU, or multiple nodes 
could be coordinated via distributed parallelization (which incurs greater computational overhead for interpro-
cess coordination across nodes).

4.2. Results
We define runtime as the time spent initializing the problem, performing all computations within solvers, and 
writing solutions to file at the end of simulations. Table 3 compares the computational performance of the Bend-
ers decomposition algorithm and the monolithic solution approach.

We find that using Benders decomposition brings little benefit for cases with small numbers of zones, espe-
cially for LP problems without integer variables. We observe a substantial reduction in computational time when 
considering MILP problems, particularly large scale problems. Additionally, all instances of the Bender’s algo-
rithm solved within the time limit of 48 hours whereas the monolithic algorithm saw 29 intractable MILP cases 
out of the 70 that were run.

We observe that most intractable problem instances for the monolithic model occur in scenarios RPS and CO2. 
Including these time-coupling constraints reflects common clean energy and emissions reductions targets; in our 
trials, the reference, RPS-, and CO2-constrained cases incurred 8.6e8, 6.0e8, and 1.9e8 tons of CO2, respectively, 
across the year for the 19-zone case when simulated on 12 weeks of data. An inability to include these time- 
coupling constraints thus threatens models’ relevance to systems undergoing decarbonization.

Figure 3 suggests that the runtime associated with our Benders algorithm grows linearly with the number of 
weeks considered. We observe that runtime grows quadratically with the number of modeled zones. This fact 
hints that there may be value in decomposing along spatial dimensions in future work, as the algorithm 
described here operates only over temporal dimensions.

As the number of weeks in the simulation increases, runtime per iteration increases linearly—see Figure 4. 
Because the master model incorporates more information per iteration due to its increased number of cuts, the 
number of iterations required for convergence decreases roughly logarithmically (Figure 4). These trends explain 
the superior performance of the decomposition method for problems with a larger numbers of weeks.

In contrast, increasing the number of zones increases the size of both the master (9) and the subproblem (10); 
accordingly, we see a simultaneous increase in iteration time and number of iterations required for convergence 

Table 3. Runtime for Benders and Monolithic Models (100 s) Followed by Ratio Between Monolithic and Decomposition 
Solution Approaches

LP MILP

Weeks → |Z | |G | 2 12 22 32 42 52 2 12 22 32 42 52

2 62 1.1 1.2 2.1 3.4 4.1 6.4 1.1 1.2 1.4 1.6 1.9 2.0
6 175 5.9 10.1 16.6 19.7 26.0 28.3 6.1 10.6 16.4 21.6 25.9 36.8

12 285 66.9 79.3 112.8 135.1 151.6 173.0 89.5 86.2 128.0 165.2 191.1 200.4
Benders (100 s) 19 437 474.0 465.0 558.3 702.0 776.5 720.0 407.5 652.4 718.9 953.3 994.7 1,123.4

2 62 0.4 1.0 2.1 3.5 4.1 6.0 2.9 58.6 112.5 702.8 1,344.3 651.9
6 175 0.6 4.3 10.8 18.3 27.5 36.7 7.5 129.4 ∞T ∞M ∞T ∞T

12 285 1.2 10.7 27.9 50.4 79.3 106.8 24.5 ∞T ∞T ∞T ∞T ∞T

Mono. (100 s) 19 437 1.7 21.7 61.9 112.0 167.9 227.4 252.5 ∞T ∞T ∞T ∞T ∞T

2 62 0.3 0.8 1.5 2.2 2.3 3.2 2.5 48.0 78.2 444.8 722.7 329.2
6 175 0.1 0.4 0.7 0.9 1.1 1.3 1.2 12.3 ∞T ∞M ∞T ∞T

12 285 <0.1 0.1 0.3 0.4 0.5 0.6 0.3 ∞T ∞T ∞T ∞T ∞T

Ratio 19 437 <0.1 0.1 0.1 0.2 0.2 0.3 0.6 ∞T ∞T ∞T ∞T ∞T

Notes. ∞ denotes a case with an intractable monolithic model. Cases that are intractable due to memory are noted with the superscript M. Cases 
that are intractable due to insufficient time are noted with a superscript T. Cases where the model outperformed its analogous model 
formulation are shown for the runtime rows, cases where the decomposed model outperformed monolithic are bolded for the ratio cases. 
Results shown for the CO2-constrained case. Additional cases are included in the appendix.
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(Figure 4). These dual impacts explain the quadratic runtime increase shown in Figure 3 as the number of zones 
increases. Increasing the number of zones increases number of resource operational decisions and thus increases 
the amount of information that must be incorporated by a given cut, as the vector y in (9b) grows in dimensional-
ity. The direct relationship between zones and number of iterations suggests that higher-dimensionality cuts 
poorly approximate the subproblems’ objective values. Our decomposition method outperforms the monolithic 
approach on all MILP formulations with more than 2 weeks. It outperformed LP formulations on 2- and 6-zone 
problem instances with more than 12 or 32 weeks, respectively. The decomposition method remained within an 
order of magnitude of runtime on all simulations and always maintained a linear relationship between weeks 
and runtime, suggesting that the decomposed model will eventually outperform a monolithic approach as tem-
poral resolution increases.

We further investigate the benefits of our novel decomposition scheme when compared with a standard imple-
mentation of Benders decomposition algorithm, which keeps timesteps coupled when solving Problem (1). In 
this case, the master problem is given by Equation (2), while the single operational subproblem is formulated as 
in (3).

The Benders algorithm with a fully coupled operational subproblem is intractable under all instances with 
more than 22 weeks of operation (Table 4). An aggregated Benders cut does not reduce the number of iterations 
as temporal resolution increases and further slows iteration time due to the size of the subproblem and the 
impossibility of parallelizing it.

Because it is the largest simulation found to be tractable under this standard Benders implementation, we con-
sider a 6-zone LP network run on 22 weeks of data under the CO2 policy scenario. Figure 5 compares the perfor-
mance of the decomposition scheme developed in Section 3 with the standard Benders implementation as 

Figure 3. (Color online) Runtime by Weeks (Left) and by Zone (Right) Obtained by Applying Benders Decomposition to Solve 
the MILP Problem in the CO2-Constrained Case 

Note. Runtime grows linearly with the number of weeks, while it increases quadratically with the number of zones.

Figure 4. (Color online) Runtime per Iteration by Week (Left) and Number of Iterations (Right), Shown for Different Numbers 
of Zones in the Reference Case 

Notes. Runtime per iteration increases both with the number of weeks and the number of zones modeled. Number of iterations increases with 
the number of zones but decreases with the number of weeks modeled.
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described in Equations (2) and (3). For both algorithms, we define the optimality gap as (UB�LB)=LB, where UB 
and LB are current upper and lower bounds on the optimal value, respectively. Figure 5 shows that the novel 
decomposition algorithm takes significantly less time to converge, running in 132 iterations with an average iter-
ation time of 12.0 seconds. The standard Benders algorithm, by contrast, runs in 630 iterations with an average 
iteration time of 241.0 seconds (see Table 4).

The purpose of the energy systems planning models is to provide decision support for resource capacity 
expansion. As such, the specific solutions vector for these capacity planning problems is also of salient interest to 
stakeholders and decision makers (e.g., in utility integrated resource planning processes). Because system cost is 
not the primary output of these models, we do not believe it appropriate to rely on it as the sole indicator of the 
quality of models’ results. In fact, Palmintier and Webster (2013) note that error in cost does not correlate with 
error in other system characteristics depending on the means of clustering used or capacity installed for different 
resources in the system. It is thus impossible to extrapolate error in capacity decisions based solely on error in 
cost. Therefore, we define the mean squared error (MSE) in investment decisions as:

MSE(j) � 1
|G |

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

g∈G
(yP

g
j � yP

g
52)2

s

, (11) 

where yP
g

j is the recommended capacity for resource g ∈ G, computed solving our planning problem for j ∈
{2, 12, 22, 32, 42, 52}weeks.

These MSE values are computed by comparing near-optimal solutions for the considered MILPs. There may be 
multiple investment portfolios yielding similar costs for any given model. The MSE metric described in Equation (11) 
assesses the ability of lower-resolution models to recapitulate investment recommendations of higher-resolution mod-
els which inherently have lower structural uncertainty, even considering the possibility of multiple near-optimal 
solutions.

Figure 6 shows that MSE decreases as the temporal resolution increases and that using too few representative 
weeks can lead to average deviations as high as 600 MW per site for storage clusters. While we show that MSE 
decreases as temporal resolution increases, it is impossible to compute rigorous upper bounds on MSE a priori. 
That is, it is impossible to prove the maximum deviation from optimal capacity investments due to abstractions 
without solving the full model for comparison.

Figure 6 shows that temporal resolution has greatest impact on storage, NG, and VRE resources, likely due to 
the misrepresentation of VRE availability in models with low temporal resolution. The relatively high MSE 

Figure 5. (Color online) Optimality Gap vs. Runtime for Our Benders Algorithm with Decomposed Subproblem (10) and a Stan-
dard Benders Implementation with a Full Operational Subproblem (3) 

Note. Plotted on logarithmic x- and y-axes.

Table 4. Runtime in Seconds and Number of Iterations for 6-Zone LP CO2-Constrained Simulations

Model Type Runtime (100 s) Iterations

Weeks → 2 12 22 32 42 52 2 12 22 32 42 52

Monolithic 0.6 4.3 10.8 18.3 27.5 36.9 NA
Benders 5.9 10.1 16.6 19.7 26.0 28.3 231 139 132 104 107 94
Benders full operation 40.6 5.7e2 1.5e3 INT INT INT 509 607 630 INT INT INT

Notes. 6-Zone CO2 was selected for representation because it was the largest case with tractable full operation models. Intractable simulations 
are marked INT.
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values for resources in Figure 6 demonstrate models’ difficulty in providing recommendations on storage, NG, 
and VRE investments at high levels of temporal aggregation.

Coal resources are incentivized to retire completely by policy constraints. Similarly, nuclear resources are dis-
incentivized from building due to a high fixed cost of investment. These impacts yield little variation in capacity 
regardless of temporal resolution, leading to low MSE in Figure 6. Errors at the resource level are likely to vary 
with policy or cost assumptions.

5. Conclusions
Our algorithm was able to solve MILP energy systems planning problems that were intractable when monolithic; 
we showed that this ability markedly decreased error associated with modeling. Furthermore, Figure 5 shows 
that the standard Benders algorithm without decoupling via budgeting constraints in the master model is signifi-
cantly less successful than our fully decomposed scheme, often leading to intractability on smaller problems 
than the monolithic approach (Table 4). Standard decomposition schemes that do not separate timesteps do not 
gain as much information from Benders cuts at each iteration. We therefore note that the reformulation of the 
problem from (1) to (4) is the primary contribution of this paper.

The proposed decomposition scheme has several advantages over monolithic models currently in use 
industry-wide and methods explored in previous literature where operational subproblems were not decom-
posed (Lara et al. 2018, Li et al. 2022) or were decomposed via a nested algorithm (Sepulveda 2020). Below, we 
list some specific benefits to the proposed algorithmic scheme. We note as well that model improvements are not 
restricted to the framework of energy systems and can inform researchers working on integrated planning pro-
blems in other application areas, including water resources (Naderi and Pishvaee 2017), industrial processes 
(Shah and Ierapetritou 2012), and facility location (An 2020). 

1. Superior Performance: Our decomposed model consistently outperformed monolithic solution approaches 
using state-of-the-art commercial solvers on cases with discrete, integer investment decisions and was competitive 
with linearized investment decisions depending on model size and structure tested. Our ability to decouple and 
parallelize subperiods and provide |W | cuts per iteration decreased both the number of iterations and runtime per 
iteration relative to a more conventional Benders decomposition algorithm, resulting in linear runtime increase as a 
function of resolution.

2. Increased Resolution: Because runtime scales well with master model size, a great deal of information on invest-
ments (including geographic constraints for expansion, integer transmission expansion, and different constraints 
or properties for different units of thermal plant) can be included with minimal expense to performance. Our 
decomposition algorithm’s runtime scales linearly with number of weeks included, which further allows for inclu-
sion of more subperiods beyond the standard strategy of considering only few weeks or days of operation without 
risking intractability. Decreasing the level of abstraction in this way helps eliminate structural uncertainty (Pfennin-
ger 2017). Indeed, we demonstrated that increasing temporal resolution decreased the MSE associated with invest-
ment decisions by resource type and location.

5.1. Future Directions and Novel Capabilities
While increased resolution (as a corollary, decreased reliance on abstraction) is one exciting implication of this 
work, it is not the only application of the proposed algorithmic scheme. Improved performance also benefits 

Figure 6. (Color online) Mean Squared Error as Defined in Equation (11) 

Notes. Figure shows that low temporal resolution causes great deviation in capacity recommendations for storage, NG, and VRE. Data are 
shown for the 19-zone, CO2-constrained MILP trial.
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research due to the additional analysis enabled by decreased computational bandwidth. Some potential addi-
tional applications include: 

1. Enabling More Extensive Analysis: Improved computational performance due to decomposition can also be 
employed to conduct more extensive exploration of parameter uncertainty via scenario analysis methods or enable 
incorporation of methods like multiobjective optimization or modeling to generate alternatives (Patankar and Jen-
kins 2020), which explores a wide range of alternative solutions with similar objective function results (e.g., costs). 
Such methods require solving the planning problem multiple times under different parameters or objective func-
tions, thus benefiting greatly from improved runtime for each problem.

2. Ability to Capture Economies of Scale: Making integer investments tractable permits modeling of discrete capac-
ity investment decisions that capture economics of unit scale that are common in many applications, including elec-
tricity transmission and generator investment decisions. Other methods with continuous capacity decisions cannot 
capture economies of unit scale and may result in unrealistic biases (Donohoo-Vallett 2014). Additionally, without 
decomposition, modeling electricity network and power flows with KVL introduces nonlinearities in combined 
investment/operations models and generally requires Big-M reformulations that can significantly slow computa-
tional time loosening the convex relaxation of the MILP problem. The structure of the decomposition algorithm 
herein separates investment and operations into discrete problems and thus can allow KVL and other operational 
characteristics that have interactions with investments to be included seamlessly in a convex model.

3. Model Accessibility. Current state-of-the-art energy systems planning tools are inaccessible to many potential 
users due to high computational demands and their associated need for expensive commercial solvers. In fact, the 
benchmarks computed by Hans Mittelmann (Mittelmann 2023) report that the fastest open source solver can still 
be, on average, 30 to 40 times slower than the best commercial solvers. Analogously, Han et al. (2021) show that sol-
vers that are completely open source (score “10” on the “openness” scale) tend to perform poorly on large-scale 
security constrained economic dispatch models. The decomposition method introduced here involves solving sub-
stantially smaller master and operational subproblems, which makes it easier to implement open-source solvers, 
thereby increasing accessibility of macro-energy systems planning models.
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Helistö N, Kiviluoma J, Morales-España G, O’Dwyer C (2021) Impact of operational details and temporal representations on investment 

planning in energy systems dominated by wind and solar. Appl. Energy 290:116712.
Lara CL, Mallapragada DS, Papageorgiou DJ, Venkatesh A, Grossmann IE (2018) Deterministic electric power infrastructure planning: Mixed- 

integer programming model and nested decomposition algorithm. Eur. J. Oper. Res. 271(3):1037–1054.
Larson E, Greig C, Jenkins J, Mayfield E, Pascale A, Zhang C, Drossman J, et al. (2021) Net zero America: Potential pathways, infrastructure, 

and impacts. Final report summary, Princeton University, Princeton, NJ.
Li C, Conejo AJ, Liu P, Omell BP, Siirola JD, Grossmann IE (2022) Mixed-integer linear programming models and algorithms for generation 

and transmission expansion planning of power systems. Eur. J. Oper. Res. 297(3):1071–1082.
Lohmann T, Rebennack S (2017) Tailored benders decomposition for a long-term power expansion model with short-term demand response. 

Management Sci. 63(6):2027–2048.
Mallapragada DS, Sepulveda NA, Jenkins JD (2020) Long-run system value of battery energy storage in future grids with increasing wind 

and solar generation. Appl. Energy 275:115390.
Mallapragada DS, Papageorgiou DJ, Venkatesh A, Lara CL, Grossmann IE (2018) Impact of model resolution on scenario outcomes for elec-

tricity sector system expansion. Energy 163:1231–1244.
Mittelmann H (2023) Benchmarks for optimization software. Accessed May 1, 2023, http://plato.asu.edu/bench.html.

Jacobson et al.: A Novel Benders Decomp. Scheme for Energy Systems Planning 
INFORMS Journal on Optimization, Articles in Advance, pp. 1–14, © 2023 INFORMS 13 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
8.

11
2.

20
0.

10
7]

 o
n 

15
 S

ep
te

m
be

r 
20

23
, a

t 1
1:

03
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 

http://plato.asu.edu/bench.html


Munoz FD, Hobbs BF, Watson JP (2016) New bounding and decomposition approaches for MILP investment problems: Multi-area transmis-
sion and generation planning under policy constraints. Eur. J. Oper. Res. 248(3):888–898.

Naderi MJ, Pishvaee MS (2017) A stochastic programming approach to integrated water supply and wastewater collection network design 
problem. Comput. Chemical Engrg. 104:107–127.

Neumann F, Hagenmeyer V, Brown T (2022) Assessments of linear power flow and transmission loss approximations in coordinated capacity 
expansion problems. Appl. Energy 314:118859.

Palmintier BS, Webster MD (2013) Heterogeneous unit clustering for efficient operational flexibility modeling. IEEE Trans. Power Syst. 
29(3):1089–1098.

Palmintier BS, Webster MD (2015) Impact of operational flexibility on electricity generation planning with renewable and carbon targets. IEEE 
Trans. Sustain. Energy. 7(2):672–684.

Patankar N, Jenkins J (2020) Land use, transmission expansion, and supply chain scale-up implications of alternative scenarios for 100% 
carbon-free electricity generation in the American west. AGU Fall Meeting Abstracts, 2020:GC080-08.

Pfenninger S (2017) Dealing with multiple decades of hourly wind and PV time series in energy models: A comparison of methods to reduce 
time resolution and the planning implications of inter-annual variability. Appl. Energy 197:1–13.

Poncelet K, Delarue E, D’haeseleer W (2020) Unit commitment constraints in long-term planning models: Relevance, pitfalls and the role of 
assumptions on flexibility. Appl. Energy 258:113843.

Poncelet K, Delarue E, Six D, Duerinck J, D’haeseleer W (2016) Impact of the level of temporal and operational detail in energy-system plan-
ning models. Appl. Energy 162:631–643.

Ricks W, Norbeck J, Jenkins J (2022) The value of in-reservoir energy storage for flexible dispatch of geothermal power. Appl. Energy 
313:118807.

Ricks W, Xu Q, Jenkins JD (2023) Minimizing emissions from grid-based hydrogen production in the United States. Environ. Res. Lett. 
18(1):014025.

Ringkjøb HK, Haugan PM, Solbrekke IM (2018) A review of modelling tools for energy and electricity systems with large shares of variable 
renewables. Renew. Sustain. Energy Rev. 96:440–459.

Schivley G, Welty E, Patankar N (2021) Powergenome/powergenome: v0.4.0 (v0.4.0). Zenodo. https://doi.org/10.5281/zenodo.4426097.
Sepulveda NA (2020) Decarbonization of power systems, multi-stage decision-making with policy and technology uncertainty. Ph.D. thesis, Massachu-

setts Institute of Technology, Cambridge.
Shah NK, Ierapetritou MG (2012) Integrated production planning and scheduling optimization of multisite, multiproduct process industry. 

Comput. Chemical Engrg. 37:214–226.
Siala K, Mahfouz MY (2019) Impact of the choice of regions on energy system models. Energy Strategy Rev. 25:75–85.
Victoria M, Zeyen E, Brown T (2022) Speed of technological transformations required in Europe to achieve different climate goals. Joule 

6(5):1066–1086.
Victoria M, Zhu K, Brown T, Andresen GB, Greiner M (2020) The role of photovoltaics in a sustainable European energy system under vari-

able CO2 emissions targets, transmission capacities, and costs assumptions. Prog Photovoltaics Res. Appl. 28(6):483–492.
Xu Q, Hobbs BF (2019) Value of model enhancements: Quantifying the benefit of improved transmission planning models. IET Gener. Transm. 

Distrib. 13(13):2836–2845.

Jacobson et al.: A Novel Benders Decomp. Scheme for Energy Systems Planning 
14 INFORMS Journal on Optimization, Articles in Advance, pp. 1–14, © 2023 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
8.

11
2.

20
0.

10
7]

 o
n 

15
 S

ep
te

m
be

r 
20

23
, a

t 1
1:

03
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 

https://doi.org/10.5281/zenodo.4426097

	A Computationally Efficient Benders Decomposition for Energy Systems Planning Problems with Detailed Operations and Time-Coupling Constraints
	Introduction
	Problem Formulation
	Solution Method
	Numerical Experiments
	Conclusions


